Super-efficient solar cells: 10 Breakthrough Technologies 2024
Solar cells that combine traditional silicon with cutting-edge perovskites could push the efficiency of solar panels to new heights.
WHO
Beyond Silicon, Caelux, First Solar, Hanwha Q Cells, Oxford PV, Swift Solar, Tandem PV
WHEN
3 to 5 years
In November 2023, a buzzy solar technology broke yet another world record for efficiency. The previous record had existed for only about five months—and it likely won’t be long before it too is obsolete. This astonishing acceleration in efficiency gains comes from a special breed of next-generation solar technology: perovskite tandem solar cells. These cells layer the traditional silicon with materials that share a unique crystal structure.
This story is only available to subscribers.
Don’t settle for half the story.
Get paywall-free access to technology news for the here and now.
Subscribe now
Already a subscriber?
Sign in
You’ve read all your free stories.
MIT Technology Review provides an
intelligent and independent filter for the
flood of information about technology.
Subscribe now
Already a subscriber?
Sign in
In the decade that scientists have been toying with perovskite solar technology, it has continued to best its own efficiency records, which measure how much of the sunlight that hits the cell is converted into electricity. Perovskites absorb different wavelengths of light from those absorbed by silicon cells, which account for 95% of the solar market today. When silicon and perovskites work together in tandem solar cells, they can utilize more of the solar spectrum, producing more electricity per cell.
Technical efficiency levels for silicon-based cells top out below 30%, while perovskite-only cells have reached experimental efficiencies of around 26%. But perovskite tandem cells have already exceeded 33% efficiency in the lab. That is the technology’s tantalizing promise: if deployed on a significant scale, perovskite tandem cells could produce more electricity than the legacy solar cells at a lower cost.
But perovskites have stumbled when it comes to actual deployment. Silicon solar cells can last for decades. Few perovskite tandem panels have even been tested outside.
The electrochemical makeup of perovskites means they’re sensitive to sucking up water and degrading in heat, though researchers have been working to create better barriers around panels and shifting to more stable perovskite compounds.
In May, UK-based Oxford PV said it had reached an efficiency of 28.6% for a commercial-size perovskite tandem cell, which is significantly larger than those used to test the materials in the lab, and it plans to deliver its first panels and ramp up manufacturing in 2024. Other companies could unveil products later this decade.