Skip to Content
Climate change and energy

Busting three myths about materials and renewable energy

Here’s what you really need to know about mining and climate change.

February 2, 2023
Silvery rock overlaid with a broken pane of glass
Stephanie Arnett/MITTR | Getty

This article is from The Spark, MIT Technology Review's weekly climate newsletter. To receive it in your inbox every Wednesday, sign up here.

No piece of media shaped me more than the mid-2000s TV show MythBusters

In the show, a band of special-effects pros tested out myths from TV shows or popular knowledge, like: Can a snowplow flip a car over? Can you fly using fireworks? Are elephants really afraid of mice? The team tried to figure out the answers in a process that often involved explosions and frequently enlisted the help of a crash test dummy they called Buster. 

My process today as a journalist looks a little different, but I think dozens of rounds of the MythBusters cycle—ask, search, answer—definitely left an impression on me.

The MythBusters pilot came out 20 years ago last week, so in honor of the occasion, we’re going to be busting some myths on one of my favorite topics: the materials we need to fight climate change. 

Myth #1: We don’t have enough materials to build what we need to fight climate change. 

This one comes up a lot, and there’s a pretty good reason. We’re going to need a lot of stuff to set up a new, zero-emissions world. 

To keep things relatively simple, I’m going to focus on the two industries with the highest emissions today: electricity generation and transportation. Together, they make up nearly three-quarters of the world’s greenhouse-gas emissions. 

In order to cut emissions in these sectors, we need to build a lot of new infrastructure, especially new ways of generating electricity and batteries that can store it. So how much material are we looking at here?

Pretty much any construction requires some combination of steel, aluminum, and probably copper. According to a new study, in order to meet climate goals we’ll need a lot of each of those just to build infrastructure to generate electricity. Between now and 2050, demand could total up to 1.96 billion metric tons of steel, 241 million metric tons of aluminum, and 82 million metric tons of copper. 

That sounds like a lot, and it is. But if you compare those numbers with the known reserves on the planet that we can access economically, it’s a small fraction. And annual production won’t have to grow by more than 20% for supply of any of these materials to meet demand. 

It’s a slightly different story when it comes to more specialty ingredients, like the rare-earth metals in wind turbine engines, the polysilicon in solar panels, or the cobalt and lithium in batteries. 

For some of those materials, we’ll need growth to be more dramatic. Demand for dysprosium and neodymium could quadruple between now and 2050 because of wind turbines. We’ll probably need to double the polysilicon we make. Battery materials, too, could see demand spike. 

Getting the mines and infrastructure in place to actually meet demand will be a challenge, for sure. But in every case, the planet has plenty of reserves of the materials we need. For more on this topic and details from the study I mentioned, you can check out my story on the topic.

Myth #2: All that mining will be worse for the climate and environment than fossil fuels. 

Again, there’s a good reason that this comes up: mining has social and environmental ramifications. But let’s compare the environmental impacts of burning fossil fuels and mining renewable-energy materials.  

It can be tough to weigh different technologies that will cause different harms in different places. So we’ll focus on two sets of numbers here: total emissions, and the total amount of mining needed. 

When it comes to emissions, the story is pretty simple: we’ll generate emissions while we build new energy infrastructure, but we’ll avoid a lot more by not burning fossil fuels. At most, we could generate up to 29 billion metric tons of greenhouse-gas emissions building renewable-energy infrastructure. That’s less than one year’s worth of the world’s emissions from fossil fuels today. And the story might turn out even better if we can work out how to cut emissions from steel and cement production or establish robust recycling for some key materials

As for environmental harms beyond climate-related pollution, the picture can be more complicated, and we’ll get more into this when we address the last myth. But for now, let’s consider the sheer mass of mining needed for fossil fuels and for renewable energy. 

About 7.5 billion metric tons of coal were mined in 2021. Estimates for the maximum amount of materials we’ll need annually to build low-emissions energy infrastructure top out at about 200 million metric tons, including all the cement, aluminum, steel, and even glass that needs to be produced. 

So in total, compared with relying on fossil fuels, a transition to renewable energy means both less stuff coming out of the ground and less climate pollution in the form of emissions. 

Myth #3: Renewable and low-carbon energy are “clean” and beyond reproach. 

Even though renewable energy is necessary to combat climate change, there are some major challenges that come along with the transition away from fossil fuels. That includes potential harms from mining and processing the materials used to build these new technologies. 

Take Thacker Pass, the site of a proposed lithium mine in Nevada in the US. The mine could generate the lithium we need to make a million EVs every year. But for the Indigenous people who live in the area and consider the land sacred, that’s not a consolation

Mining can cause pollution, especially water pollution, and communities that live near those mines will bear the brunt. Not only that, but mining in some parts of the world has been linked to human rights abuses, including forced and child labor. Those abuses certainly aren’t limited just to the metals we need for renewable power, but it’s important to remember that efforts to decarbonize the world aren’t immune from those problems. 

We need to cut emissions to address climate change if we want a livable world in the future. And personally, I think we’ll need a lot of new technologies to make that happen. 

How we build those technologies, though, could have a huge influence on their social and environmental ramifications. A recent study, for example, found that lithium demand will be influenced by policies around public transit, vehicle size, and recycling. Finding alternatives and cutting down on how much lithium we use could mean we need to build fewer mines in the future. 

Two things can be simultaneously true, and I think many folks who think a lot about climate change might agree: climate action is necessary, and the way we take that action will matter. 

JOE DELNERO/NREL

Keeping Up with Climate

MIT spinout Boston Metal raised $120 million to scale up its coal-free steelmaking technology. (Canary Media

→ The company uses a process called molten oxide electrolysis, which replaces coal with electricity to make steel. (MIT Technology Review)

Speaking of money, climate tech investments topped $1 trillion in 2022, a new record. And for the first time ever, there was more investment in low-carbon technologies than in oil and gas production. (Bloomberg)

Building new solar and wind is cheaper than running existing coal plants in the US in 99% of cases. Falling costs for renewables and a boost from recent policy are turning coal power into a dinosaur. (Inside Climate News)

As climate change supercharges wildfires in the western US, Colorado is joining other states using AI to track blazes. (Associated Press)

Natural gas is a fossil fuel, but a growing number of companies are trying to sell it as “green.” (Canary Media

Climate change is coming for another one of my favorite things: fancy ham. To make Spanish jamón ibérico bellota, pigs have to eat acorns for the last month of their lives. But oak trees are producing fewer acorns because of unusually hot, dry summers. (The Guardian)

Cheaper lithium-ion batteries are coming to the US. Lithium iron phosphate (LFP) batteries don’t use expensive cobalt and nickel, and now production is spreading outside China. (Chemical and Engineering News)

→ I talked about these low-cost batteries in a story about what’s coming up for the industry this year. If you haven’t read it yet, check it out for all my 2023 predictions. (MIT Technology Review

Deep Dive

Climate change and energy

What’s coming next for fusion research

A year ago, scientists generated net energy with a fusion reactor. This is what’s happened since then.

Is this the most energy-efficient way to build homes?

Airtight and super-insulated, a passive house uses around 90% less energy.

The University of California has all but dropped carbon offsets—and thinks you should, too

It uncovered systemic problems with offset markets and recommended that the public university system focus on cutting its direct emissions instead.

Super-efficient solar cells: 10 Breakthrough Technologies 2024

Solar cells that combine traditional silicon with cutting-edge perovskites could push the efficiency of solar panels to new heights.

Stay connected

Illustration by Rose Wong

Get the latest updates from
MIT Technology Review

Discover special offers, top stories, upcoming events, and more.

Thank you for submitting your email!

Explore more newsletters

It looks like something went wrong.

We’re having trouble saving your preferences. Try refreshing this page and updating them one more time. If you continue to get this message, reach out to us at customer-service@technologyreview.com with a list of newsletters you’d like to receive.